Abstract

As the complex terrain in hilly areas is not conducive to corn mid-tillage precision fertilization, a corn-overlapped strip fertilizer spreader was designed without an external power source. By configuring a passive overlapping spreading method with a three-branch split chamber structure, the uniform spreading of fertilizer in strips was achieved. A horizontal and vertical movement model of fertilizer spreading was developed to determine the angle of the fertilizer extending tube, the width of fattening small plates, and the height of the fertilizer spread as the main factors affecting the fertilizer distribution pattern. The single-factor ternary orthogonal rotational combination response surface simulation test was carried out with pendulum angle, width, and height as test factors and the transversal fertilizer uniformity coefficient and longitudinal fertilizer uniformity coefficient as test indicators. The test results showed that the pendulum angle, height, and width had significant effects (p < 0.05) on the transversal fertilizer uniformity coefficient, and the pendulum angle and width had a considerable impact (p < 0.05) on the longitudinal fertilizer uniformity coefficient. In the optimal combination of parameters, swing angle 52°, height 400 mm, and width 50 mm operation, the coefficients of uniformity of both the transversal fertilizer uniformity coefficient and longitudinal fertilizer uniformity coefficient were less than 0.15%. A verification test was carried out under the optimal combination of parameters for the simulation tests with the simulation conditions as the standard. The test results were consistent with the simulation results within the error range. The deviation values of the transversal fertilizer uniformity coefficient and longitudinal fertilizer uniformity coefficient were 8.11% and 9.01%, respectively. The corn-overlapped strip fertilizer spreader was able to complete the fertilizer spreading operation smoothly. This study provides evidence for further optimizing the performance of the corn mid-tillage fertilizer applicator.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call