Abstract

Leakage from water distribution networks (WDNs) is inevitable. Therefore, during design a WDN, engineers add a percentage of each nodal water demand as leakage discharge to total node demand. The amount of leakage depends on the pressure, which is not known at the design stage. Considering a constant percentage of node demand in lieu of its leakage makes the problem worse. In this study, the effect of leakage on the optimal WDN design was investigated by developing the matrix form of the gradient algorithm while accounting for leakage using the pressure-dependent model. Non-dominated genetic algorithm version II (NSGA-II) was used as the optimization engine with two objectives which includes minimizing the network construction cost and minimizing the total network pressure deficiency. Two well-known two- and three-loop WDNs in literature were studied. The results indicated that the pressure-dependent leakage varies between 12.9 and 29.44% of the node demand while the network construction cost stays the same if compared with the fixed percentage leakage model, and the construction cost would increase by 17–31%, if leakage is not accounted for. This is expected the optimized diameters and hydraulic characteristics of the networks being affected by the leakage calculation method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.