Abstract

A high-performance controller and strategy can significantly ameliorate the dynamic and transient capability of doubly fed induction generator (DFIG) based wind turbine. As regards, the wind speed has essentially defined the generated power by DFIG, thus, both the active and the reactive power must be followed out according to the entrance wind in the nominal and disturbance conditions. Toward this objective, noninteger order fuzzy proportional integral derivative (NIOFPID) controller based direct power control (DPC) strategy is proposed in this paper to minimize the deviation of both active and reactive power with the aim of accurate and speedy tracking of these powers. In the same vein, the aforementioned problem must be formulized in the form of the multi-objective optimization problem. Multi-objective particle swarm optimization (MOPSO) is here taken into account to intermingle with the simultaneous coordination of NIOFPIDs. The performance of held forth controller has been further evaluated under the affected power system caused by short circuit and flicker events. Eventually, the simulation results under transient and steady-state conditions demonstrate the dynamic and transient performance of NIOFPID-based DPC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.