Abstract

We study the interplay between dephasing, disorder, and coupling to a sink on transport efficiency in a one-dimensional chain of finite length N, and in particular the beneficial or detrimental effect of dephasing on transport. The excitation moves along the chain by coherent nearest-neighbor hopping Ω, under the action of static disorder W and dephasing γ. The last site is coupled to an external acceptor system (sink), where the excitation can be trapped with a rate Γ_{trap}. While it is known that dephasing can help transport in the localized regime, here we show that dephasing can enhance energy transfer even in the ballistic regime. Specifically, in the localized regime we recover previous results, where the optimal dephasing is independent of the chain length and proportional to W or W^{2}/Ω. In the ballistic regime, the optimal dephasing decreases as 1/N or 1/sqrt[N], respectively, for weak and moderate static disorder. When focusing on the excitation starting at the beginning of the chain, dephasing can help excitation transfer only above a critical value of disorder W^{cr}, which strongly depends on the sink coupling strength Γ_{trap}. Analytic solutions are obtained for short chains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.