Abstract

The worldwide effort for the development of more efficient and environmentally friendly ships has led to the development of new concepts. Extensive electrification is a very promising technology for this purpose. Together with optimal power management can lead to a substantial improvement in ship efficiency ensuring, at the same time, compliance with the environmental constraints and enhancing ship sustainability. In this paper, a method for optimal demand-side management and power generation scheduling is proposed. Demand-side management is based on the adjustment of the power consumed by ship electric propulsion motors, and no energy storage facility is exploited. Dynamic programming algorithm subjected to ship operation and environmental and travel constraints is used to solve the problem for all-electric ships (AESs). Simulation results prove that the proposed method ensures cost minimization of ship power system operation, greenhouse gas (GHG) emissions limitation, and compliance with all technical and operational constraints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.