Abstract

In this paper, the optimal demand response strategy of a commercial building-based virtual power plant with real-world implementation in heavily urbanised area is studied. Instead of modelling the decision-making process as an optimisation problem, a reinforcement learning method is used to seek the optimal strategy, which could update its performance with minimal manpower manipulation. Specifically, the data collection from several commercial buildings, including hotel, shopping mall and office, in Huangpu district, Shanghai city is analysed to deploy the demand response program. Compared with the conventional demand response strategy based on optimisation, the learnt strategy does not rely on the forecasting information as input and could adapt to the changing demand response incentive automatically. It may not produce the best result every time, but can guarantee the benefit in a non-deterministic way in long-term operation. The real-world deployment of the Huangpu virtual power plant involving hardware and software platform is also introduced, as well as its future development projection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.