Abstract

This study was aimed at the synthesis and characterization of ( δ -FeOOH)/MWCNTs nanocomposite as the catalyst for Ciprofloxacin (CIP) removal through a heterogeneous Fenton-like process. The proposed experimental design applies the central composite design (CCD) as a response surface methodology (RSM). The effect of influential parameters, including initial CIP concentration, catalyst dose, H 2 O 2 concentration, initial pH, and reaction time on removal, were investigated. ( δ -FeOOH)/MWCNTs nanocomposite was synthesized using a single-step co-precipitation technique. Besides, nano-feroxyhyte and nanocomposite properties were characterized by transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), energy dispersive X-ray analysis (EDX), particle size analysis (PSA), X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and field emission scanning electron microscopy (FESEM). The inhibitory hale experiment was performed by Escherichia coli (E. coli) to evaluate the antibacterial activity. The optimal CIP removal efficiency (86.9%) was achieved by 131.6 min reaction time, CIP concentration of 10.0 mg/L, catalyst dosage of 23.5 mg, H 2 O 2 concentration of 20.6 mM, and initial pH of 5.3, with a biodegradability index (BOD 5 /COD) of 0.35 Based on the results, ( δ -FeOOH)/MWCNTs showed a significant catalytic activity for CIP removal, which can be attributed to the simultaneous effects of advanced oxidation and absorption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.