Abstract

We propose an optimal architecture for deep neural networks of given size. The optimal architecture obtains from maximizing the minimum number of linear regions approximated by a deep neural network with a ReLu activation function. The accuracy of the approximation function relies on the neural network structure, characterized by the number, dependence and hierarchy between the nodes within and across layers. For a given number of nodes, we show how the accuracy of the approximation improves as we optimally choose the width and depth of the network. More complex datasets naturally summon bigger-sized architectures that perform better applying our optimization procedure. A Monte-Carlo simulation exercise illustrates the outperformance of the optimised architecture against cross-validation methods and gridsearch for linear and nonlinear prediction models. The application of this methodology to the Boston Housing dataset confirms empirically the outperformance of our method against state-of the-art machine learning models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.