Abstract

In electrospray ionization mass spectrometry (ESI-MS), peptide and protein ions are usually observed in multiple charge states. Moreover, adduction of the multiply charged species with other ions frequently results in quite complex signal patterns for a single analyte, which significantly complicates the derivation of quantitative information from the mass spectra. Labeling strategies targeting the MS1 level further aggravate this situation, as multiple biological states such as healthy or diseased must be represented simultaneously. We developed an integer linear programming (ILP) approach, which can cluster signals belonging to the same peptide or protein. The algorithm is general in that it models all possible shifts of signals along the m/z axis. These shifts can be induced by different charge states of the compound, the presence of adducts (e.g., potassium or sodium), and/or a fixed mass label (e.g., from ICAT or nicotinic acid labeling), or any combination of the above. We show that our approach can be used to infer more features in labeled data sets, correct wrong charge assignments even in high-resolution MS, improve mass precision, and cluster charged species in different charge states and several adduct types.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.