Abstract
We study the large scale behavior of elliptic systems with stationary random coefficient that have only slowly decaying correlations. To this aim we analyze the so-called corrector equation, a degenerate elliptic equation posed in the probability space. In this contribution, we use a parabolic approach and optimally quantify the time decay of the semigroup. For the theoretical point of view, we prove an optimal decay estimate of the gradient and flux of the corrector when spatially averaged over a scale Rge 1. For the numerical point of view, our results provide convenient tools for the analysis of various numerical methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Stochastics and Partial Differential Equations: Analysis and Computations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.