Abstract

Direct-current-biased optical orthogonal frequency-division multiplexing (DCO-OFDM) is widely used in high-speed visible light communication (VLC). Due to the limited dynamic range of light-emitting diode (LED) and the unipolarity for the intensity modulation (IM), double-sided clipping is inevitably imposed on the time-domain signal in VLC OFDM systems. Consequently, it calls for proper DCO-OFDM signal shaping by selecting an appropriate bias and time-domain signal power to reduce the clipping distortion and achieve a higher transmission rate. In this paper, we deep dive into the signal shaping design problem for double-sided clipping DCO-OFDM over both flat and dispersive channels. We derive the optimal bias for flat and dispersive channels, and explain its optimality from the perspectives of effective signal-to-noise ratio (SNR) and information theory. We then analytically characterize the optimal power for flat channels and propose a useful algorithm for dispersive channels enlightened by the optimal solution to the flat case. Furthermore, we uncover an inherent relationship between the considered double-sided clipping and the downside-clipping only DCO-OFDM regarding signal shaping optimization, and develop an in-depth understanding of the impact of top clipping based on the established connection. Practical simulations are provided to validate the superiority of our proposed signal shaping over the existing shaping schemes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.