Abstract
ABSTRACT This paper studies optimally defined contribution (DC) pension investment problems under the expected utility maximization framework with stochastic income and inflation risks. The member has access to a financial market consisting of a risk-free asset (money account), an inflation-indexed bond, and a stock. The market price of volatility risk is assumed to depend on an affine-form, Markovian, square-root factor process, while the return rate and the volatility of the stock are possibly given by general non-Markovian, unbounded stochastic processes. This financial framework recovers the Black–Scholes model, constant elasticity of variance (CEV) model, Heston model, 3/2 model, 4/2 model, and some non-Markovian models as exceptional cases. To tackle the potentially non-Markovian structures, we adopt a backward stochastic differential equation (BSDE) approach. By solving the associated BSDEs explicitly, closed-form expressions for the optimal investment strategies and optimal value functions are obtained for the power, logarithmic, and exponential utility functions. Moreover, explicit solutions to some special cases of our portfolio model are provided. Finally, numerical examples are provided to illustrate the effects of model parameters on the optimal investment strategies under the 4/2 model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.