Abstract
Wireless links are often unreliable and prone to transmission error due to varying channel conditions. These can degrade the performance in wireless networks, particularly for applications with tight quality-of-service requirements. A common remedy is to use channel coding where the transmitter node adds redundant bits to the transmitted packets in order to reduce the error probability at the receiver. However, this per-link solution can compromise the link data rate, leading to undesired end-to-end performance. In this paper, we show that this latter shortcoming can be mitigated if the end-to-end transmission rates and channel code rates are selected properly over multiple routing paths. We formulate the joint channel coding and end-to-end data rate allocation problem in multipath wireless networks as a network throughput maximization problem, which is non-convex. We tackle the non-convexity by using function approximation and iterative techniques from signomial programming. Simulation results confirm that by using channel coding jointly with multi-path routing, the end-to-end network performance can be improved significantly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.