Abstract

Microbial fuel cells (MFCs) are biocells that use microorganisms as biocatalysts to break down organic matter and convert chemical energy into electrical energy. Presently, the application of MFCs as alternative energy sources is limited by their low power attribute. Optimization of MFCs is very important to harness optimum energy. In this study, we develop optimal data-driven models for a typical MFC synthesized from polymethylmethacrylate and two graphite plates using machine learning algorithms including support vector regression (SVR), artificial neural networks (ANNs), Gaussian process regression (GPR), and ensemble learners. Power density and output voltage were modeled from two different datasets; the first dataset has current density and anolyte concentration as features, while the second dataset considers current density and chemical oxygen demand as features. Hyperparameter optimization was carried out on each of the considered machine learning-based models using Bayesian optimization, grid search, and random search to arrive at the best possible models for the MFC. A model was derived for power density and output voltage having 99% accuracy on testing set evaluations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.