Abstract

Energy conservation is an important aspect in wireless sensor networks (WSNs) to extend the network lifetime. In order to obtain energy-efficient data transmission within the network, sensor nodes can be organised into an optimal data aggregation tree with optimally selected aggregation nodes to transfer data. Various nature-inspired optimisation methods have been shown to outperform conventional methods when solving this problem in a distributed manner, that is, each sensor node makes its own decision on routing the data. In this study, a novel optimisation algorithm called intelligent water drops (IWDs) is adopted to construct the optimal data aggregation trees for the WSNs. Further enhancement of the basic IWD algorithm is proposed to improve the construction of the tree by attempting to increase the probability of selecting optimum aggregation nodes. The computational experiment results show that the IWD algorithm is able to obtain a better data aggregation tree with a smaller number of edges representing direct communication between two nodes when compared with the well-known optimisation method such as ant colony optimisation. In addition, the proposed improved version of the IWD algorithm provides better performance in comparison with the basic IWD algorithm for saving the energy of WSNs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.