Abstract

The past decade has seen a significant growth in research targeted at space-based observatories for imaging exosolar planets. The challenge is in designing an imaging system for high contrast. Even with a perfect coronagraph that modifies the point spread function to achieve high contrast, wavefront sensing and control is needed to correct the errors in the optics and generate a "dark hole." The high-contrast imaging laboratory at Princeton University is equipped with two Boston Micromachines Kilo-DMs. We review here an algorithm designed to achieve high contrast on both sides of the image plane while minimizing the stroke necessary from each deformable mirror (DM). This algorithm uses the first DM to correct for amplitude aberrations and uses the second DM to create a flat wavefront in the pupil plane. We then show the first results obtained at Princeton with this correction algorithm, and we demonstrate a symmetric dark hole in monochromatic light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.