Abstract
A systematic method for optimal added damper placement in building structures is developed, taking into account the response amplification due to the surface ground. Non-linear amplification of the surface ground is described by an equivalent linear model. Hysteretic damping of the surface ground and radiational damping into the semi-infinite visco-elastic ground are included in the model. An original steepest direction search algorithm is applied to the interaction model. Closed-form expressions of the inverse of the coefficient matrix (tri-diagonal matrix) enable one to compute the transfer function and its derivative with respect to design variables very efficiently. It is shown that the ratio of the fundamental natural period of the structure to that of the surface ground is a key parameter for characterizing the optimal damper placement. Several examples for different soil conditions are presented to demonstrate the effectiveness and validity of the present method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.