Abstract

This paper presents a control strategy for optimizing the the spooling speeds of tethered energy harvesting systems that generate energy through cyclic spooling motions which consist of high-tension spool-out and low-tension spool-in. Specifically, we fuse continuous-time optimal control tools, including Pontryagin’s Maximum Principle, with an iteration domain co-state correction, to develop an optimal spooling controller for energy extraction. In this work, we focus our simulation results specifically on an ocean kite system where the goal is to optimize the spooling profile while remaining at a consistent operating depth and corresponding average tether length. This paper demonstrates a 14-45% improvement (depending on the operating tether length and environmental flow speed) in power generation compared to a baseline, heuristic, control strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.