Abstract
This article presents the optimal current allocation and the magnetic force production associated with the hexapole electromagnetic actuation, wherein six electromagnets are used to control the magnetic field and exert the 3-D magnetic force on a specified microscopic magnetic particle in the 3-D workspace of the actuating system. It addresses four major issues in the inverse modeling of the multipole electromagnetic actuation, i.e., 1) redundancy; 2) coupling; 3) nonlinearity; and 4) position-dependency, and leads to the accurate and effective 3-D magnetic force production within the specified workspace. Specifically, the optimal inverse modeling of the hexapole electromagnetic actuation is derived to minimize the 2-norm of the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$6 \times 1$</tex-math></inline-formula> input current vector when applied to produce the desired 3-D magnetic force to propel the magnetic particle in aqueous solutions. The inverse model is implemented in a high-speed field programmable gate array system to realize the real-time current allocation, which is used to render the feedback stabilization of the magnetic trap. The accurate and effective 3-D force production through the optimal current allocation is experimentally validated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.