Abstract

Optimizing a multi-reservoir system is complicated, since the operation of one reservoir depends on other reservoir and may also have conflicting multiple objectives. The conflicting purposes of a multi-reservoir system requires a systematic multi-objective study. Recently, multi-objective evolutionary algorithms (MOEAs) have been widely used for the multi-objective analysis of the reservoir systems. However, the simple MOEAs result in premature convergence and local optimal solution for complex non-linear multi-objective optimization problems. To improve the performance and maintain the diversity in the population, chaos is being combined with the evolutionary algorithms for optimizing complex problems. In the present study, the chaos algorithm is coupled with MOEAs such as non-dominated genetic algorithm-II (CNSGA-II) and multi-objective differential evolution algorithm (CMODE) to derive an optimal crop planning for a multi-reservoir system having intra-basin water transfer. The model is developed with the objective of maximizing the net benefits and maximizing the crop production, subject to various physical, land and water availability constraints. The resulted optimal policy is further assessed using a simulation model and its performance is evaluated using various statistical indices. It is found that CMODE has resulted in slightly higher net benefits of Rs. 1921.77 Million and 1201.55 thousand tons of crop production with an irrigation intensity of 106.29% compared to other techniques used in this study. It has also resulted in an optimal spatial and temporal intra-basin water transfer from the upstream reservoirs to the downstream reservoir. The simulation of optimal results showed that the optimal policies obtained from CMODE performed well for longer period with less irrigation deficits. All the reservoirs in the system achieved more than 95% reliability in meeting the irrigation demands and intra-basin water transfer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.