Abstract

There are numerous examples of studied real-world systems that can be described as dynamical systems characterized by individual phases and coupled in a networklike structure. Within the framework of oscillatory models, much attention has been devoted to the Kuramoto model, which considers a collection of oscillators interacting through a sinus function of the phase differences. In this paper, we draw on an extension of the Kuramoto model, called the Kuramoto-Sakaguchi model, which adds a phase lag parameter to each node. We construct a general formalism that allows us to compute the set of lag parameters that may lead to any phase configuration within a linear approximation. In particular, we devote special attention to the cases of full synchronization and symmetric configurations. We show that the set of natural frequencies, phase lag parameters, and phases at the steady state is coupled by an equation and a continuous spectra of solutions is feasible. In order to quantify the system's strain to achieve that particular configuration, we define a cost function and compute the optimal set of parameters that minimizes it. Despite considering a linear approximation of the model, we show that the obtained tuned parameters for the case of full synchronization enhance frequency synchronization in the nonlinear model as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.