Abstract
Using a maximum-likelihood criterion, we derive optimal correlation strategies for signals with and without digitization. We assume that the signals are drawn from zero-mean Gaussian distributions, as is expected in radio-astronomical applications, and we present correlation estimators both with and without a priori knowledge of the signal variances. We demonstrate that traditional estimators of correlation, which rely on averaging products, exhibit large and paradoxical noise when the correlation is strong. However, we also show that these estimators are fully optimal in the limit of vanishing correlation. We calculate the bias and noise in each of these estimators and discuss their suitability for implementation in modern digital correlators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.