Abstract

The increasing penetration of electric vehicles (EVs) and renewable generators (RGs) in the power grid is an inevitable trend to combat air pollution and reduce the usage of fossil fuels. This will challenge distribution networks, which have constrained capacity. However, appropriate dispatch of electric vehicles via vehicle-to-grid (V2G) operation in coordination with the distributed renewable generators can provide support for the grid, reduce the reliance on traditional fossil-fuel generators and benefit EV users. This paper develops a novel agent-based coordinated dispatch strategy for EVs and distributed renewable generators, taking into account both grid's and EV users' concerns and priorities. This optimal dispatch problem is formulated as a distributed multi-objective constraint optimisation problem utilizing the Analytic Hierarchy Process and is solved using a dynamic-programming-based algorithm. The proposed strategy is tested on a modified UK Generic Distribution System (UKGDS). The electricity network model is simplified using a virtual sub-node concept to alleviate the computation burden of a node's agent. Simulation results demonstrate the feasibility and stability of this dispatch strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call