Abstract

Air temperature and speed play a critical role in the thermal sensation of comfort felt by occupants, especially in the tropics. It is of great practical interest to coordinate air conditioning and mechanical ventilation (ACMV) system and personal fans so as to enhance building demand response (DR) capability while minimizing energy cost in response to a specific electricity price signal and maintaining a thermal comfort level. In this paper, an optimization problem of coordinating ACMV and personal fans is addressed, which captures the coupling between ACMV and fans. A Lagrangian relaxation-based algorithm is developed to solve the problem by individually solving the subproblems of ACMV and personal fans with Lagrangian multipliers as the coordinated signals. This algorithm can separate the calculation of the cooling effect from the optimization procedure, so we do not have to solve the problem using a non-analytical model for evaluating the cooling effect provided by the fans. The performance of the proposed method is evaluated and validated using experimental and simulation results. Both the results show that coordinating ACMV and fans can substantially enhance building DR capability, save energy cost, and also improve customized thermal comfort microenvironment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call