Abstract

This paper deals with Tikhonov regularization for linear and nonlinear ill-posed operator equations with wavelet Besov norm penalties. We focus on penalty terms which yield estimators that are sparse with respect to a wavelet frame. Our framework includes, among others, the Radon transform and some nonlinear inverse problems in differential equations with distributed measurements. Using variational source conditions it is shown that such estimators achieve minimax-optimal rates of convergence for finitely smoothing operators in certain Besov balls both for deterministic and for statistical noise models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.