Abstract

We show that the approximation given by the original discontinuous Galerkin method for the transport-reaction equation in d space dimensions is optimal provided the meshes are suitably chosen: the $L^2$-norm of the error is of order $k+1$ when the method uses polynomials of degree k. These meshes are not necessarily conforming and do not satisfy any uniformity condition; they are required only to be made of simplexes, each of which has a unique outflow face. We also find a new, element-by-element postprocessing of the derivative in the direction of the flow which superconverges with order $k+1$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.