Abstract

In this paper, we solve the long-standing fundamental problem of irregular linear--quadratic (LQ) optimal control, which has received significant attention since the 1960s. We derive the optimal controllers via the key technique of finding the analytical solutions to two different forward and backward differential equations (FBDEs). We give a complete solution to the finite-horizon irregular LQ control problem using a new `two-layer optimization' approach. We also obtain the necessary and sufficient condition for the existence of optimal and stabilizing solutions in the infinite-horizon case in terms of solutions to two Riccati equations and the stabilization of one specific system. For the first time, we explore the essential differences between irregular and standard LQ control, making a fundamental contribution to classical LQ control theory. We show that irregular LQ control is totally different from regular control as the irregular controller must guarantee the terminal state constraint of $P_1(T)x(T)=0$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.