Abstract

AbstractA control vector parameterization (CVP)‐based hybrid algorithm, HAPSODSA‐CVP, is proposed to solve the nonlinear chemical dynamic optimization problems, where adaptive particle swarm optimization (APSO) is applied to enhance the global search ability, while differential search algorithm (DSA) is used to improve the local exploitation ability. Three well‐known classic nonlinear chemical dynamic optimization problems are tested as illustration, and detailed comparisons are carried out among PSO‐CVP, APSO‐CVP, and HAPSODSA‐CVP approaches. The research results not only demonstrate the efficiency of the HAPSODSA‐CVP approach for this kind of dynamic optimization problems, but also its superiority to both APSO‐CVP and PSO‐CVP approaches in terms of accuracy as well as convergence rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.