Abstract

In this paper two different control strategies designed to alleviate the response of quasi partially integrable Hamiltonian systems subjected to stochastic excitation are proposed. First, by using the stochastic averaging method for quasi partially integrable Hamiltonian systems, an n-DOF controlled quasi partially integrable Hamiltonian system with stochastic excitation is converted into a set of partially averaged Ito stochastic differential equations. Then, the dynamical programming equation associated with the partially averaged Ito equations is formulated by applying the stochastic dynamical programming principle. In the first control strategy, the optimal control law is derived from the dynamical programming equation and the control constraints without solving the dynamical programming equation. In the second control strategy, the optimal control law is obtained by solving the dynamical programming equation. Finally, both the responses of controlled and uncontrolled systems are predicted through solving the Fokker-Plank-Kolmogorov equation associated with fully averaged Ito equations. An example is worked out to illustrate the application and effectiveness of the two proposed control strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call