Abstract

In the present work we investigate an optimal control problem related to the following chemotaxis-consumption model in a bounded domain Ω⊂R3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Omega \\subset {\\mathbb {R}}^3$$\\end{document}: ∂tu-Δu=-∇·(u∇v),∂tv-Δv=-usv+fv1Ωc,\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} \\partial _t u - \\Delta u = - \ abla \\cdot (u \ abla v), \\quad \\partial _t v - \\Delta v = - u^s v + f \\,v\\, 1_{\\Omega _c}, \\end{aligned}$$\\end{document}with s≥1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$s \\ge 1$$\\end{document}, endowed with isolated boundary conditions and initial conditions for (u, v), being u the cell density, v the chemical concentration and f the control acting in the v-equation through the bilinear term fv1Ωc\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$f \\,v\\, 1_{\\Omega _c}$$\\end{document}, in a subdomain Ωc⊂Ω\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Omega _c \\subset \\Omega $$\\end{document}. We address the existence of optimal control restricted to a weak solution setting, where, in particular, uniqueness of state (u, v) given a control f is not clear. Then by considering weak solutions satisfying an adequate energy inequality, we prove the existence of optimal control subject to uniformly bounded controls. Finally, we discuss the relation between the considered control problem and two other related ones, where the existence of optimal solution can not be proved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.