Abstract

We consider an optimal control problem for systems governed by nonlinear ordinary differential equations, with control and state constraints, including pointwise state constraints. The problem is formulated in the classical and in the relaxed form. Various necessary/sufficient conditions for optimality are first given for both problems. For the numerical solution of these problems, we then propose a penalized gradient projection method generating classical controls, and a penalized conditional descent method generating relaxed controls. Using also relaxation theory, we study the behavior in the limit of sequences constructed by these methods. Finally, numerical examples are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.