Abstract

<p style='text-indent:20px;'>The convective Brinkman-Forchheimer (CBF) equations describe the motion of incompressible viscous fluids through a rigid, homogeneous, isotropic, porous medium and is given by</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \partial_t{\boldsymbol{u}}-\mu \Delta{\boldsymbol{u}}+({\boldsymbol{u}}\cdot\nabla){\boldsymbol{u}}+\alpha{\boldsymbol{u}}+\beta|{\boldsymbol{u}}|^{r-1}{\boldsymbol{u}}+\nabla p = {\boldsymbol{f}},\ \nabla\cdot{\boldsymbol{u}} = 0. $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>In this work, we consider some distributed optimal control problems like total energy minimization, minimization of enstrophy, etc governed by the two dimensional CBF equations with the absorption exponent <inline-formula><tex-math id="M1">\begin{document}$ r = 1,2 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M2">\begin{document}$ 3 $\end{document}</tex-math></inline-formula>. We show the existence of an optimal solution and the first order necessary conditions of optimality for such optimal control problems in terms of the Euler-Lagrange system. Furthermore, for the case <inline-formula><tex-math id="M3">\begin{document}$ r = 3 $\end{document}</tex-math></inline-formula>, we show the second order necessary and sufficient conditions of optimality. We also investigate an another control problem which is similar to that of the data assimilation problems in meteorology of obtaining unknown initial data, when the system under consideration is 2D CBF equations, using optimal control techniques.</p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call