Abstract

The paper investigates the problem of optimal control of water distribution networks without storage capacity. Using mathematical optimization, we formulate and solve the problem as a non-convex NLP, in order to obtain optimal control curves for both variable speed pumps and pressure reducing valves of the network and thus propose a methodology for the automated control of real operational networks. We consider both single-objective and multi-objective problems with average zonal pressure, pump energy consumption and water treatment cost as objectives. Furthermore, we investigate global optimality bounds for the calculated solutions using global optimization techniques. The proposed approach is shown to outperform state-of-the-art global optimization solvers. The described procedure is demonstrated in a case study using a large size operational network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.