Abstract
Minimum time and minimum energy point-to-point trajectories for an industrial robot of the type Manutec r3 are computed subject to state constraints on the angular velocities. The numerical solutions of these optimal control problems are obtained in an efficient way by a combination of a direct collocation and an indirect multiple shooting method. This combination links the benefits of both approaches: A large domain of convergence and a highly accurate solution. The numerical results show that the constraints on the angular velocities become active during large parts of the time optimal motion. But the resulting stress on the links can be significantly reduced by a minimum energy trajectory that is only about ten percent slower than the minimum time trajectory. As a by-product, the reliability of the direct collocation method in estimating adjoint variables and the efficiency of the combination of direct collocation and multiple shooting is demonstrated. The highly accurate solutions reported in this paper may also serve as benchmark problems for other methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.