Abstract

In this paper, we introduce and study an optimal control problem governed by mixed equilibrium problems described by the sum of a maximal monotone bifunction and a bifunction which is pseudomonotone in the sense of Brezis/quasimonotone. Our motivation comes from the fact that many control problems, whose state system is a variational inequality problem or a nonlinear evolution equation or a hemivariational inequality problem, can be formulated as a control problem governed by a mixed equilibrium problem. There are different techniques to study optimal control problems governed by nonlinear evolution equations, variational inequalities or hemivariational inequalities in the literature. However, our technique is completely different from existing ones. It is based on the Mosco convergence and recent results in the theory of equilibrium problems. As an application, we study optimal control problems governed by elliptic variational inequalities with additional state constraints.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.