Abstract

We control a broad class of singular (or "rough") Fourier multipliers by geometrically-defined maximal operators via general weighted $L^2(\mathbb{R})$ norm inequalities. The multipliers involved are related to those of Coifman--Rubio de Francia--Semmes, satisfying certain weak Marcinkiewicz-type conditions that permit highly oscillatory factors of the form $e^{i|\xi|^\alpha}$ for both $\alpha$ positive and negative. The maximal functions that arise are of some independent interest, involving fractional averages associated with tangential approach regions (related to those of Nagel and Stein), and more novel "improper fractional averages" associated with "escape" regions. Some applications are given to the theory of $L^p-L^q$ multipliers, oscillatory integrals and dispersive PDE, along with natural extensions to higher dimensions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.