Abstract
Legumes produce root nodules containing symbiotic rhizobial bacteria that convert atmospheric molecular nitrogen into ammonia or related nitrogenous compounds. The host plant supplies photosynthetic products to root nodules forming a mutualistic system. Legumes have physiological mechanisms for regulating nodule production with chemical signals produced in leaves, called the autoregulation of nodulation. In this paper, we discuss the optimal number of root nodules that maximizes the performance of the host plant. Here, we study two models. In the stationary plant model, the acquired photosynthetic products minus cost and loss are used for reproduction. In the growing plant model, the excess material is invested to produce leaves, roots, and root nodules, resulting in the exponential growth of the whole plant. The analysis shows that having root nodules is beneficial to the plant for a high leaf nitrogen content, faster plant growth rate, a short leaf longevity, a low root/shoot ratio, and low soil nutrient concentration. We discuss the long-distance control of nodulation-autoregulation and dependence on the environmental conditions of terrestrial plants considering these results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Theoretical Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.