Abstract

Problems related to mathematical modeling and optimal active control of pretwisted adaptive blade are considered. The blade is modeled as a rotating thin-walled composite beam embedded with anisotropic piezo-composite layers accounting for nonclassical effects, such as transverse shear and warping inhibitions. The linear-quadratic-regulator feedback control strategy is adopted to study the tailoring of piezo-actuators on vibration suppression. Control authority of piezoelectrically induced transverse shear and bending coupling is highlighted. Tailoring studies using the present model reveal that piezoelectrically induced transverse shear plays an important role on control effectiveness. In addition, the relations between the control authority and the elastic couplings, piezoelectrically induced actuation couplings, pretwist angle, and size and position of piezo-actuators are investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call