Abstract

We consider the singular optimal control problem of minimizing the energy supply of linear dissipative port-Hamiltonian descriptor systems. We study the reachability properties of the system and prove that optimal states exhibit a turnpike behavior with respect to the conservative subspace. Further, we derive a input-state turnpike towards a subspace for optimal control of port-Hamiltonian ordinary differential equations with a feed-through term and a turnpike property for the corresponding adjoint states towards zero. In an appendix we characterize the class of dissipative Hamiltonian matrices and pencils.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.