Abstract
In this work, we show how optimal control theory can be used to optimize membrane filtration processes. The objective is to determine the optimal switching between filtration and backwash sequences in order to maximize the net water production per membrane area of microfiltration or ultrafiltration systems over a given period of time. The optimal solutions, whether the backwash flux is constant or variable, have been derived for a membrane filtration process operating at constant transmembrane pressure using a class of filtration models defined only by their qualitative behaviors. The optimal solution is applied in a simulation case study by considering a specific model validated on data recovered from the literature. The robustness of the approach has been evaluated for different disturbances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.