Abstract

An optimal flow control methodology based on adjoint sensitivity analysis for controlling nonlinear open channel flows with complex geometries is presented. The adjoint equations, derived from the nonlinear Saint-Venant equations, are generally capable of evaluating the time-dependent sensitivities with respect to a variety of control variables under complex flow conditions and cross-section shapes. The internal boundary conditions of the adjoint equations at a confluence (junction) derived by the variational approach make the flow control model applicable to solve optimal flow control problems in a channel network over a watershed. As a result, an optimal flow control software package has been developed, in which two basic modules, i.e., a hydrodynamic module and a bound constrained optimization module using the limited-memory quasi-Newton algorithm, are integrated. The effectiveness and applicability of this integrated optimal control tool are demonstrated thoroughly by implementing flood diversion controls in rivers, from one reach with a single or multiple floodgates (with or without constraints), to a channel network with multiple floodgates. This new optimal flow control model can be generally applied to make optimal decisions in real-time flood control and water resource management in a watershed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.