Abstract

In this paper, a novel direct scheme to solve a set of time-delay fractional optimal control problems is introduced. The method firstly uses a set of Dickson polynomials as basis functions to approximate the states and control variables of the system. Next, the context of these basis functions and the use of a collocation method allow to transform the problem into a system of nonlinear algebraic equations. Finally, the unknown coefficients and control parameters in the original problem can be easily estimated by resolving the new system of equations. Given the high efficiency of the Dickson polynomials to deal with time-delay fractional systems, the proposed strategy involves a very tunable framework for direct trajectory optimization, according to the discretization procedure and the range of arbitrary nodes. The convergence analysis of the proposed method is presented, along with some illustrative examples which demonstrate its most relevant features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.