Abstract
We consider the problem of a dynamical network whose dynamics is subject to external perturbations ("attacks") locally applied at a subset of the network nodes. We assume that the network has an ability to defend itself against attacks with appropriate countermeasures, which we model as actuators located at (another) subset of the network nodes. We derive the optimal defense strategy as an optimal control problem. We see that the network topology as well as the distribution of attackers and defenders over the network affect the optimal control solution and the minimum control energy. We study the optimal control defense strategy for several network topologies, including chain networks, star networks, ring networks, and scale free networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chaos: An Interdisciplinary Journal of Nonlinear Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.