Abstract

The N-H photodissociation dynamics of the pyridinyl radical upon continuous excitation to the optically bright, first excited ππ* electronic state by an ultra-violet (UV) laser pulse has been investigated within the mathematical framework of optimal control theory. The genetic algorithm (GA) is employed as the optimization protocol. We considered a three-state and three-mode model Hamiltonian, which includes the reaction coordinate, R (a1 symmetry); the coupling coordinates (namely, out-of-plane bending coordinate of the hydrogen atom of azine group), Θ (b1 symmetry); and the wagging mode, Q9 (a2 symmetry). The three electronic states are the ground, ππ*, and πσ* states. The πσ* state crosses both the ground state and the ππ* state, and it is a repulsive state on which N-H dissociation occurs upon photoexcitation. Different vibrational wave functions along the coupling coordinates, Θ and Q9, of the ground electronic state are used as the initial condition for solving the time-dependent Schrödinger equation. The optimal UV laser pulse is designed by applying the GA, which maximizes the dissociation yield. We obtained over 95% dissociation yield through the πσ* asymptote using the optimal pulse of a time duration of ∼30 000a.u. (∼725.66fs).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call