Abstract
This paper presents the modeling and control of a magnetorheological (MR) damper, installed in Chevron configuration, at the base of a 20-story benchmark building. The building structural model is created using the commercial software package ETABS. The MR damper model is derived from Bouc-Wen hysteresis model which provides the critical nonlinear dynamics that best represents the MR damper under a wide range of operating conditions. System identification is used to derive a low-order nonlinear model that best mimics the nonlinear dynamics of the actual MR damper. Dynamic behavior of this low-order model is tested and validated over a range of inputs. The damper model has proven its validity to a high degree of accuracy against the nonlinear model. A Kalman filter is designed to best estimate the state of the structure-damper system for feedback implementation purposes. Using the estimated states, an LQG-based compensator is designed to control the MR damper under earthquake loads. To demonstrate the effectiveness of this control strategy, four historical earthquakes are applied to the structure. Controlled and uncontrolled floor accelerations and displacements at key locations are compared. Results of the optimally controlled model demonstrate superior performance in comparison to the uncontrolled model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.