Abstract
For linear systems with interval constraints, a method for computing a time-optimal control is proposed. The method is based on transforming a quasi-optimal control. The properties and features of the quasi-optimal control are examined. A technique is described for dividing the domain of initial conditions into reachable sets over different times and for approximating each set by a family of hyperplanes. An iterative method for computing an optimal control with interval constraints is developed. The convergence of the method is proved, and a sufficient condition for the convergence of the computational process is obtained. The radius of local quadratic convergence is found. Numerical results are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computational Mathematics and Mathematical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.