Abstract

In the Moran model of drift and selection of a mutant allele with population growth, instead of examining the consequences of pre-specified selection and population growth, the coexistence of the wild allele and the mutant allele becomes the maximization of the expected sojourn time in a given set. The process is controlled by the additional mortality of the mutant and by population growth. This makes it possible to retroactively assign fitness values as functions of the constraints, thus guiding a conservation policy or the achievement of a wishful proportion of mutants. This also gives the optimal conditions that have allowed an observed coexistence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.