Abstract

We consider a class of closed loop stochastic optimal control problems in finite time horizon, in which the cost is an expectation conditional on the event that the process has not exited a given bounded domain. An important difficulty is that the probability of the event that conditionates the strategy decays as time grows. The optimality conditions consist of a system of partial differential equations, including a Hamilton-Jacobi-Bellman equation (backward w.r.t. time) and a (forward w.r.t. time) Fokker-Planck equation for the law of the conditioned process. The two equations are supplemented with Dirichlet conditions. Next, we discuss the asymptotic behavior as the time horizon tends to +∞. This leads to a new kind of optimal control problem driven by an eigenvalue problem related to a continuity equation with Dirichlet conditions on the boundary. We prove existence for the latter. We also propose numerical methods and supplement the various theoretical aspects with simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.