Abstract

Semiconductor quantum dots are among the leading candidates for next-generation nanoscale devices due to their tunable size, shape, and low energy consumption. Here we apply quantum optimal control theory to coherently manipulate the single-electron charge distribution in quantum-dot lattices of various sizes. In particular, we show that to control the charge distribution it is sufficient to optimize the gate voltage acting on a single quantum dot in the lattice. We generally find yields around 99% in the picosecond time scale when using realistic models for the quantum-dot lattices on a real-space grid. We analyze and discuss both the limitations of the model regarding the gate parameters as well as the potential of the scheme for applications as quantum-dot cellular automata.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.