Abstract

An optimal chaos control procedure is proposed. The aim of using this method is to stabilize the chaotic behavior of forced continuous-time nonlinear systems by using an approximation sequence technique and linear optimal control. The idea of the approximation technique is to use a sequence of linear, time-varying equations to approximate the solution of nonlinear systems. In each of these equations, the linear-quadratic optimal tracking control is applied. The purpose is to find a linear time-varying feedback controller which produces an optimized trajectory that converges to a desired signal. This controller is then used in the original nonlinear system. As an example, the procedure is proved to work in the Duffing oscillator and the chaotic pendulum, in which the goal is to direct chaotic trajectories of these systems to a period-n orbit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call